Гидромеханическая коробка передач что это такое

Как работает гидромеханическая коробка передач

гидромеханическая коробка передач что это такое

История создания гидромеханической коробки передач может быть использована для иллюстрации титанических усилий автопроизводителей, постаравшихся сделать комфорт автомобиля, оснащенного автоматической КПП, одним из основных преимуществ.

В первой половине прошлого века, даже после получения легковым автомобилем мягкой пневматической резины, более или менее рациональной компоновки и распределения массы машины, езда, особенно в городских условиях, по-настоящему «выматывала душу». Что лучше всего чувствуют пассажиры – это рывки и дерганье автомобиля из-за резкой смены крутящего момента на колесах.

На полки истории был отправлен не один десяток всевозможных приспособлений, делающих момент переключения передачи менее болезненным, пока в 50-х годах прошлого века не появился гидротрансформатор, лежащий в основе принципа работы гидромеханической коробки передач. По-настоящему новая конструкция коробки передач начала массово применяться в 60-е на дорогих и тяжелых лимузинах и машинах представительского класса.

Помимо дискомфорта для пассажиров, скачкообразное изменение вращающего момента разрушает узлы и детали трансмиссии. Для тяжелых магистральных грузовиков можно использовать повышенное число передач, позволяющих сглаживать перегрузки трансмиссии. Но для легковых автомобилей гидромеханическая коробка передач была реальным способом улучшить условия управления.

С внедрением гидромеханической передачи автомобиль получил неоспоримые преимущества:

  • появилась возможность трогаться с места настолько плавно, что момент начала движения можно было просто не уловить визуально;
  • при движении и маневрировании на малых скоростях, сопоставимых со скоростью движения пешехода, управление машиной осуществляется легко и точно, что практически невозможно при механической КПП из-за ее очень длинной первой передачи;
  • ударные колебания и крутящие нагрузки практически не оказывают негативного воздействия на элементы трансмиссии.
  • для водителя комфорт управления машиной увеличился как минимум вдвое.

Наряду с гидромеханическими автоматами в легковом автомобильном сегменте прочно закрепились автоматические трансмиссии с вариаторами и роботизированная «механика», практически не уступающая в удобстве и комфорте первым двум, но значительно экономичнее и дешевле. Но до сих пор гидромеханическая коробка передач остается основой для самых надежных и совершенных «автоматов».

Конструктивно автоматическая трансмиссия на основе гидромеханической коробки передач очень сильно отличается от устройства механической КПП, сложнее ее и значительно дороже, поэтому она более уязвима к нарушениям в обслуживании и использовании.

Устройство гидромеханической автоматической коробки передач

Принцип работы гидромеханической коробки передач основан на способности гидротрансформатора выступать в качестве немеханического преобразователя-регулятора крутящего момента двигателя.

Первая и основная особенность гидромеханического автомата – это отсутствие механизма включения-выключения сцепления. Практически всем водителям нравится управление без использования педали сцепления.

Если учесть, что при движении в городской черте водителю с ручной механической коробкой приходится выжимать педаль не менее ста раз в течение часа, избавление от подобной нагрузки не прошло незамеченным.

Поэтому для современного городского автомобиля автоматическая коробка передач становится фактически признанным стандартом, для дизельных двигателей – особенно.

В устройстве гидромеханической коробки выделяют три основных узла – гидротрансформатор, блок управления и планетарный механизм переключения передач.

Сердце гидромеханической коробки передач

Гидротрансформатор коробки работает по схеме: «насос – гидравлическая турбина» и обеспечивает посредством динамического давления масла на лопатки турбины передачу вращающего момента на вал коробки переключения передач.

Задача насоса или насосного колеса мало чем отличается от аналогичного, используемого в центробежных насосах: под действием центробежных сил придать потоку масла больший динамический напор.

Раскрученное маховиком коленвала колесо выбрасывает под определенным углом мощный масляный поток на периферийную часть наружной части обода турбины – на лопатки турбинного колеса. Под напором масла турбина преобразует энергию масла во вращение.

В конструкции гидротрансформатора коробки передач предусмотрено еще одно колесо с лопатками. Между двумя основными колесами установлен очень важный элемент – специальный спрямляющий аппарат, именуемый реактором, или статором. Он выполнен в виде кольца с профилированными лопатками, направляющими поток жидкости, выходящий из гидравлической турбины, на вход насосного колеса.

Внимание! Как видно из рисунка-схемы, поток жидкости, выброшенной насосом на лопатки турбины, передает ей часть энергии и далее, разворачиваясь на направляющем аппарате реактора, создает дополнительный момент вращения, что и обуславливает увеличение вращающего момента.

Вначале, когда автомобиль только начинает движение, и педаль тормоза еще не отпущена, реактор полностью заблокирован. Отпускаем педаль, и турбина гидромеханической части коробки передач начинает работать. При достижении скорости вращения турбины в 80% от скорости насосного колеса реактор выводится из работы обгонной муфтой.

Благодаря кратковременному и плавному увеличению момента вращения, скорость вращения турбинного колеса и связанных с ним всех элементов трансмиссии происходит тоже плавно.

С применением реактора вращающий момент на выходном валу гидротрансформатора в момент старта или разгона автомобиля увеличивается примерно до двух с половиной раз.

Малый диапазон возможного изменения момента и скорости вращения вынудил проектировщиков дополнить гидротрансформатор механической коробкой переключения передач. В гидромеханической коробке-автомате для легкового транспорта используют несколько редукторов планетарной передачи, включаемых в работу с помощью фрикционных муфт. Включение фрикциона осуществляется сжатием пакета фрикционных накладок с помощью гидравлического поршня особой конструкции.

Насос, запитывающий гидравлику привода, обычно устанавливается в непосредственной близости от гидротрансформатора. Для управления гидравлическими клапанами и золотниками системы в современных авто применяют электромагнитные соленоиды, управляемые электроникой. Для компенсации ударных контактных нагрузок применяют обгонные муфты, что добавляет плавности при вхождении в зацепление шестерен коробки.

Перспективы использования гидромеханической коробки передач

Очень серьезным аргументом автоматов с гидромеханическим «бубликом» является относительно отработанная и совершенная конструкция устройства. Большой ресурс, тщательно подобранные гидравлические жидкости и сплавы для валов и зубчатых передач. При надлежащем уходе и аккуратном использовании гидромеханическая коробка передач служит значительно дольше новомодных конкурентов в виде вариаторов, роботизированных или преселективных коробок DSG.

Многие специалисты считают, что за гидромеханической коробкой передач останется значительный сегмент легкового автотранспорта – внедорожники и автомобили повышенной проходимости.

Косвенным подтверждением того факта, что коробка передач на основе гидромеханической схемы еще длительное время будет интенсивно применяться в широком спектре моделей легковых автомобилей, являются последние разработки законодателей автомобильной моды – немецких автопроизводителей.

Известной в Германии фирмой ZF практически для всех топовых моделей BMW, AUDI и MERCEDES уже сейчас запущена в пробную эксплуатацию гидромеханическая коробка-автомат с 7-ю ступенями и рекордными характеристиками включения.

Кроме того, концерн MERCEDES-BENZ выпустил свой вариант гидромеханической коробки передач с 7-ю ступенями под названием 7G-Tronic.

Причина такой популярности достаточно проста и очевидна. Ведь кроме надежности, гидромеханическая коробка позволяет уверенно работать с двигателями большой мощности и с рабочим объемом более трех литров. Гидромеханическая коробка уйдет в небытие не раньше самого двигателя внутреннего сгорания.

Источник: https://mashintop.ru/articles.php?id=2627

Гидромеханическая коробка передач. Устройство

гидромеханическая коробка передач что это такое

Гидромеханическая коробка передач ⭐ состоит из:

  • гидротрансформатора;
  • механической коробки передач.

На легковых автомобилях наибольшее распространение получили гидромеханические коробки с планетарными механическими коробками. Их преимущества:

  • компактность конструкции;
  • меньшая металлоемкость и шумность;
  • больший срок службы.

К недостаткам относятся:

  • сложность;
  • высокая стоимость;
  • пониженный КПД.

Переключение передач в этих коробках производится при помощи фрикционных муфт и ленточных тормозных механизмов. При этом при включении одной передачи часть фрикционных муфт и ленточных тормозных механизмов пробуксовывает, что также снижает их КПД.

Гидротрансформатор

Гидротрансформатор представляет собой гидравли­ческий механизм, который размещен между двигателем и механической коробкой передач. Он состоит из трех колес с лопатками:

  • насосного (ведущего);
  • турбинного (ведомого);
  • реактора.

Насосное колесо 3 закреплено на маховике 1 двигателя и образует корпус гидротрансформатора, внутри которого размещены тур­бинное колесо 2, соединенное с первичным валом 5 коробки передач  и реактор 4, установленный на роликовой муфте 6 свободного хода. Внутренняя полость гидротрансформатора на 3/4 своего объема заполнена специальным маслом малой вязкости.

Рис. Гидротрансформатор:
а – общий вид; б – схема; 1 – маховик; 2 – турбинное колесо; 3 – насосное колесо; 4 – реактор; 5 – вал; 6 – муфта

Каждое колесо имеет наружный и внутренний торцы, между которыми располагаются профилированные лопасти, образующие каналы для протока жидкости. Все колеса гидротрансформатора максимально приближены друг к другу, а вытеснению жидкости препятствуют специальные уплотнения.

При работающем двигателе насосное, колесо вращается вместе с маховиком двигателя. Масло под действием центробежной силы поступает к наружной части насосного колеса, воздействует на лопатки турбинного колеса и приводит его во вращение.

Из турбинного колеса масло поступает в реактор, который обеспечивает плавный и безударный вход жидкости в насосное колесо и существенное увеличение крутящего момента.

Таким образом, масло циркулирует по замкнутому кругу и обеспечивается передача крутящего момента в гидротрансформаторе.

Характерной особенностью гидротрансформатора является увеличение крутящего момента при его передаче от двигателя к первичному валу коробки передач. Наибольшее увеличение крутящего момента на турбинном колесе гидротрансформатора получается при трогании автомобиля с места, при этом коэффициент трансформации может составлять до 2,4. В этом случае реактор неподвижен  так как заторможен муфтой свободного хода.

По мере разгона автомобиля увеличивается скорость вращения насосного и турбинного колес. При этом муфта свободного хода расклинивается и реактор начинает вращаться с увеличивающейся скоростью, оказывая все меньшее влияние на передаваемый крутящий момент. После достижения реактором максимальной скорости вращения гидротрансформатор перестает изменять крутящий момент и переходит на режим работы гидромуфты.

Таким образом, происходит плавный разгон автомобиля и бесступенчатое изменение крутящего момента.

Гидротрансформатор автоматически устанавливает необходимое передаточное число между коленчатым валом двигателя и к ведущими колесами автомобиля, Это обеспечивается следующим  образом: с уменьшением скорости вращения ведущих колес автомобиля при возрастании сопротивления движению возрастает динамический напор жидкости от насоса на турбину, что приводит к росту крутящего момента на турбине, следовательно, на ведущих колесах автомобиля.

КПД гидротрансформатора определяет экономичность его работы. Максимальное значе­ние КПД гидротрансформатора может быть от 0,85 до 0,97, но обычно находится в диапазоне от 0,7 до 0,8. В комплексном гидротрансформаторе на режиме гидромуфты можно получить максимальное значение КПД  до 0,97.

Изменение режимов работы гидротрансформатора происходит автоматически. Если увеличивать нагрузку на выходе из гидротрансформатора, то происходит уменьшение угловой скорости турбины, что приводит к увеличению коэффициента трансформации.

К сожалению, гидротрансформатор имеет малый диапазон передаточных чисел, не обеспечивает движения задним ходом, не разобщает двигатель от трансмиссии (необходима сложная система опорожнения проточных частей от рабочей жидкости). Поэтому за гидро­трансформатором устанавливают специальную планетарную коробку передач, которая компенсирует указанные недостатки.

Планетарная коробка передач

Планетарная коробка передач включает в себя планетарные механизмы. В простейшем планетарном механизме солнечная шестерня 6, закрепленная на ведущем валу 1, находится в зацеплении с шестернями-сателлитами 3, свободно установленными на своих осях. Оси сателлитов закреплены на водиле 4, жестко соединенном с ведомым валом 5, а сами сателлиты находятся и зацеплении с коронной шестерней 2, имеющей внутренние зубья.

Рис. Планетарный механизм:
1 – ведущий вал; 2 – коронная шестерня; 3 – сателлиты; 4 – водило; 5 – ведомый вал; 6 – солнечная шестерня; 7 – тормоз

Передача крутящего момента с ведущего вала 1 на ведомый вал 5 возможна только при заторможенной коронной шестерне 2 при помощи ленточного тормоза 7 или многодискового «мокрого» сцепления.

В этом случае при вращении шестерни 6 сателлиты 3, перекатываясь по зубьям неподвижной шестерни 2, начнут вращаться вокруг своих осей и одновременно через водило 4 будут вращать ведомый вал 5.

При растормаживании шестерни 2 сателлиты 3, свободно перекатываясь по шестерне 6, будут вращать шестерню 2, а вал 5 будет оставаться неподвижным.

В автоматических коробках передач применяются фрикционные муфты сцепления. Фрикционная муфта сцепления со­стоит комплекта покрытых слоем фрикционного материала дисков, прижатых друг к другу через прокладки в виде тонких пластин из гладкого металла.

Рис. Фрикционная муфта сцепления автоматической коробки передач:
1 – канал подачи рабочей жидкости; 2 – поршень; 3 – кожух муфты; а – выключенное состояние; б – включенное состояние

При этом часть фрикционных дисков оснащены внутренними шлицами, часть – наружными. Прижимание дисков друг к другу обеспечивается гидравлическим поршнем 2, для выключения сцепления применяется возвратная пружина.

При подаче к поршню давления рабочей жидкости диски плотно прижимаются друг к другу, образуя одно целое. Как только давление снимается, возвратная пружина отводит поршень назад и диски выводятся из зацепления.

В качестве возвратных пружин могут использоваться винтовые, диафрагменные и гофрированные дисковые пружины.

Двухступенчатая гидромеханическая коробка передач

В качестве примера гидромеханических передач рассмотрим двухступенчатую гидромеханическую коробку передач.

Она состоит из гидротрансформатора 1, механической планетарной коробки передач с многодисковым фрикционом 3 и двумя ленточными тормозными механизмами 2 и 4 и гидравлической системы управлениях кнопочным переключением передач.

Кнопки соответственно означают нейтральное положение, задний ход, первую передачу и движение с автоматическим переключением передач. В двухступенчатой механической коробке передач имеются два одинаковых планетарных механизма 5 и 6.

Рис. Гидромеханическая коробка передач:
1 – гидротрансформатор; 2,4 – тормозные механизмы; 3 – фрикцион; 5,6 – планетарные механизмы

В нейтральном положении фрикцион 3, а также тормозные механизмы 2 и 4 выключены. Трогание автомобиля с места происходит при включенной первой передаче. В этом случае масло под давлением поступает в цилиндр тормозного механизма 2, лента которого затягивается, и солнечная шестерня планетарного механизма 6 останавливается.

Если включена кнопка «Движение», то при разгоне автомобиля происходит автоматическое переключение на вторую передачу, что обеспечивается одновременным выключением тормозного механизма 2 и включением фрикциона 3. В этом случае планетарные механизмы 5 и 6 блокируются и вращаются как одно целое.

Для движения автомобиля задним ходом включается только тормозной механизм 4.

В настоящее время автоматические коробки передач имеют электронное управление, что позво­ляет гораздо точнее выдерживать заданные моменты переключения (с точностью до 1 % вместо прежних 68 %).

Появились дополнительные возможности: по характеру изменения скорости при данной нагрузке на дви­гатель компьютер может вычислить массу автомобиля и ввести соответствующие поправки в алгоритм переключения.

Электронное управление предоставило неограниченные возможности для само­диагностики, что позволило корректиро­вать процессы управления в зависимости от многих параметров (от температуры и вязкости жидкости до степени износа фрикционных элементов).

Система автоматического управления обычно состоит из следующих подсистем:

  • функционирования (гидравлические насосы, регуляторы давления)
  • измерительная, собирающая информацию о параметрах управления
  • управляющая, вырабатывающая управляющие сигналы
  • исполнительная, осуществляющая управление переключением передач, работой двигателя
  • подсистема ручного управления
  • подсистема автоматических защит, предотвращающая возникновение опасных ситуаций
ЭТО ИНТЕРЕСНО:  Как перевести мм рт ст в паскали

Основными элементами электронной системы управления являются электронный блок и рычаг управления.

Акп с электронным управлением

В качестве примера современной Акп с электронным управлением рассмотрим шестиступенчатую коробку передач 09G  японского концерна AISIN.

АКП состоит из гидротрансформатора, механической планетарной коробки передач с многодисковыми фрикционами и многодисковыми тормозными механизмами, гидравлической системы, систем охлаждения и смазки, электрической системы.

Рис. Разрез автоматической шестиступенчатой коробки передач 09G:
К– многодисковые муфты; В – многодисковые тормоза; S – солнечные шестерни; Р – сателлиты; РТ – водило; F – обгонная муфта; 1 – вал турбинного колеса; 2 – ведомая шестерня промежуточной передачи; 3 – жидкостный насос

Планетарные ряды объединены по схеме, разработанной Лепеллетье (Lepelletier). Крутящий момент двигателя подводится к одинарному планетарному ряду. Далее он направляется на сдвоенный планетарный ряд Равиньо (Ravigneaux).

Рис. Двухредукторная планетарная система Лепеллетье:
а – обычный планетарный редуктор; б – планетарный редуктор  Равиньо; 1 – вал турбинного колеса; Р1 – сателлит коронной шестерни Н1; Р2 – сателлит солнечной шестерни 2; Р3 – сателлит коронной шестерни 1; S1 ­­– солнечная шестерня 1; S2 — солнечная шестерня  2; S3 — солнечная шестерня 3; Н1 – коронная шестерня 1; Н2 – коронная шестерня 2

Управление одинарным планетарным рядом производится посредством многодисковых муфт K1 и K3 и многодискового тормоза B1. Число сателлитов в планетарных рядах выбирается в зависимости от передаваемого крутящего момента.

Сдвоенный планетарный ряд управляется посредством многодисковой муфты K2, многодискового тормоза B2 и обгонной муфты F. В системе управления муфтами предусмотрены устройства динамической компенсации рабочего давления, которые делают работу муфт независящей от частоты вращения. Муфты K1, K2 и K3 служат для подвода крутящего момента к планетарным рядам, а с помощью тормозов B1 и B2, а также обгонной муфты обеспечивается передача реактивных моментов на картер коробки передач.

Давление в рабочих цилиндрах муфт и тормозов изменяется посредством регулирующих клапанов.

Обгонная муфта F представляет собою механизм, который работает параллельно с тормозом.

Источник: https://ustroistvo-avtomobilya.ru/avtomaticheskie-korobki-peredach/gidromehanicheskaya-korobka-peredach/

Гидромеханическая коробка передач

гидромеханическая коробка передач что это такое

Автомобильная трансмиссия пережила уже больше века эволюционного развития. В последние десятилетия гидромеханическая коробка передач, не требующая от шофера ручного переключения ступеней трансмиссии, стала весьма популярным вариантом компоновки автомобиля и все чаще устанавливается на транспортные средства различных ценовых сегментов.

Гидромеханическая коробка передач: принцип работы и устройство

Классическая конструкция автомобиля подразумевает наличие в нем двух обязательных блоков:

  • коробка переключения передач;
  • сцепление.

Такое описание подходит для знакомой автомобилистам уже много десятилетий механической коробки. Но со временем, по мере развития технологий, стали появляться другие вариации узла КПП, обеспечивающие человеку за рулем больший комфорт передвижения.

Трансмиссия – один из базовых узлов автомобиля. Благодаря ей обеспечивается передача крутящего момента с двигателя машины на колеса. В автомобильном деле много лет безраздельно господствовала механическая КПП, предусматривающая в своем конструктиве описанные выше блоки. Водитель должен был выполнить три последовательных операции:

  • отключить мотор авто от трансмиссии на момент переключения (выжать сцепление);
  • дать команду на смену крутящего момента путем перемещения рычага КПП в нужное
  • положение;
  • отжать сцепление, вернув двигателю связь с колесами.

Но ситуация изменилась, инженеры создали КПП, где педали сцепления нет. Процесс управления автомобилем для человека в таком случае значительно упрощается: ЭБУ осуществляет переход на нужную передачу сам. Управление производится селектором коробки, педалями тормоза и газа.

Трогаясь с места, водитель выжимает тормоз, перемещает селектор в положение D (Drive), отпускает тормоз, и начинает движение. На 1 передачу, 2 и далее АКПП переходит сама, в зависимости от скорости авто, положения педали газа, оборотов двигателя и других факторов, контроль которых осуществляется множеством датчиков.

Этот процесс обеспечивается применением нескольких технологий, гидромеханическая КПП среди которых – самая известная, «обкатанная» в производстве и надежная. В ней смена передач на фрикционах производится посредством циркуляции под давлением трансмиссионного масла по коробке.

Современная гидромеханическая трансмиссия – это сложное устройство, состоящее из следующих основных компонентов:

  • гидротрансформатор;
  • ЭБУ – электронный «мозг» коробки, и управляющие механизмы;
  • фрикционные элементы;
  • создающий давление масла насос;
  • пружины и каналы гидромеханической системы;
  • механическая коробка.

  Многоступенчатые коробки передач немецкой фирмы ZF

Последнее – не опечатка, в основе АКПП действительно лежит «механика», конструктивно дополненная блоками автоматического переключения с гидротрансформатором – отсюда и название узла. Типичная гидромеханическая КПП в разрезе:

История коробки-автомата началась в первой четверти 20 века: тогда концерн Ford начал внедрять первые образцы «гидромеханики» в свою продукцию. В СССР АКПП массового распространения среди конечного потребителя не получила, хотя, например, в конце 50-х годов завод ЛАЗ в сотрудничестве с НАМИ разработал и внедрил гидромеханическую трансмиссию в автобусы серии ЛАЗ-695Ж. Позднее ее использовали и в модели ЛиАЗ-677, было выпущено около 200 тыс. автобусов на АКПП.

Гидромеханика ЛАЗ в разрезе:

В современном же автомобилестроении «автомат» встречается очень часто, даже в бюджетных моделях машин.

Про гидротрансформатор

Сердце рассматриваемого типа коробки – узел, называемый гидротрансформатором. Его устройство можно увидеть на схеме:

Узел расположен между механической частью КПП и двигателем, и выполняет функции сцепления. Применение гидротрансформатора позволяет, помимо удобства водителя, дать транспортному средству плавность трогания с места и остановки, и обеспечить движение без рывков. Это прямым образом влияет на долговечность двигателя, поскольку значительно снижаются неизбежные при эксплуатации авто на «механике» динамические нагрузки.

Конструктивно данный узел составлен из дисков с лопастями, соединенных друг с другом:

  • турбинное лопастное колесо, связанное жестко с валом коробки;
  • колесо реактора (статор), усиливающее момент кручения;
  • насосное лопастное колесо, связывающее мотор и узел гидротрансформатора.

Интересно: весь дисковый блок объединен одним кожухом, на три четверти погруженным в трансмиссионное масло, представляющее собой основную рабочую среду АКПП.

Насосное колесо вращается синхронно с маховиком, на аналогичной скорости. Когда происходит вращение, трансмиссионное масло поступает на турбинное колесо, передавая последнему усилие вращения. Далее масло идет на колесо реактора, перемещающее жидкость обратно к исходному насосному колесу. Благодаря процессу циркуляции рабочего тела под напором происходит передача момента вращения на колеса.

Интересно: блок автоматически определяет требуемое передаточное число и передает на АКПП усилие, а коробка уже включает фрикционами нужную передачу.

Помимо легкового транспорта, гидротрансформаторы используются в тяжелой технике: некоторых моделях маневровых тепловозов и локомотивов, дизельных тракторов, тягачей, подъемных кранов. Подобным устройством приводились в движение гребные винты буксира «Маршал Блюхер». Оснащенные гидродинамической трансмиссией автомобили «Чайка», «Волга», «ЗИЛ» также снабжались гидротрансформаторами.

Как работает вальная КПП

Вальные «автоматы» довольно широко применяются в производстве автобусов, большегрузных ТС. Слово «вальная» относится к механической коробке в составе АКПП. «Механический» узел бывает в данном случае:

  • многовальным;
  • двухвальным;
  • трехвальным.

Для смены передач задействуются погруженные в специальное масло многодисковые муфты, а задний ход, первая ступень трансмиссии в некоторых случаях включаются зубчатой муфтой. Устройство таких АКПП позволяет переключать скорости фрикционами за счет работы коленвала, при этом не происходит потерь мощности и просадки момента вращения.

Классическая схема – двухвальная, с первичным (ведущим), вторичным (ведомым) валами, несущими шестеренки. В трехвальной схеме имеется также вал промежуточный, где расположена соединенная с главной передачей шестерня.

Вальные модели нашли ограниченное применение в легковых авто: в частности, ими оснащены многие автомобили Honda и ряд моделей концерна Mercedes. Использование подобных КПП связано с определенными техническими затруднениями: на задне приводных машинах к коробке передач применяется требование соосности, и вальная АКПП должна иметь на шестернях не менее двух зацеплений на передачу. А это снижает КПД.

Еще один недостаток – высокие дисковые потери, если число передач у транспортного средства больше трех. В вальной коробке в таком случае много выключенных сцеплений, что ведет к указанным потерям. Кроме того, валы достаточно велики по длине, что делает коробку габаритной и уменьшает свободное пространство в салоне, а также увеличивает шумность и снижает надежность. Частично это решено внедрением трехвальных коробок, с более короткими, жесткими и надежными валами.

Как работает планетарная КПП

Для гидромеханических трансмиссий производители стараются применять планетарный механизм:

В общем случае устройство и принцип работы гидромеханической коробки передач, созданной на базе планетарной системы можно описать так:

  • усилие передается на главную, или солнечную, шестерню (центральную, под номером 6);
  • вспомогательные сателлиты (обозначены цифрой 3) беспрепятственно вращаются по оси и
  • постоянно сцеплены зубчиками с центральной;
  • на этих сателлитах смонтировано водило (номер 4), сообщающееся с валом (номер 5);
  • вспомогательные элементы также сцеплены с коронной шестерней, обозначенной на рисунке цифрой 2.

  Jatco jf414e-АКПП Лада Гранта

Водило, когда коронная шестеренка неподвижна, передает усилие на вал ведомый, когда она расторможена, то через сателлиты усилие идет на шестеренку номер 2. Сам вал остается недвижим. Непосредственно переключение происходит посредством ленточных механизмов и пакетов фрикционных муфт.

Плюсы и минусы гидромеханики

Резюмируя сказанное, можно сделать вывод: гидромеханическая АКПП – это узел, состоящий из гидротрансформатора, модуля механической коробки передач (в большинстве случаев планетарной), оснащенной пакетом фрикционов, системы гидравлического управления и контролирующего электронного блока.

Из плюсов такой связки:

  • удобство водителя: не нужно менять скорости вручную;
  • передача мощности от двигателя идет без «просадок» и рывков, что особенно важно при трогании.

Но есть и очевидные недостатки. Один из них – относительно малый, по сравнению с механикой, КПД, что обусловлено наличием гидротрансформатора.

Важно: в процессе циркуляции рабочего тела часть эффективности теряется: по данным исследований, КПД механической коробки около 98%, аналогичный показатель у «автомата» находится в пределах 86-90%.

Кроме того, есть и другие минусы:

  • высокая сложность узла, обилие компонентов, как следствие – относительно меньшая надежность (хотя гидромеханические КПП могут при должном уходе «ходить» десятилетиями, что успешно показывают японские, корейские и немецкие авто);
  • более высокая стоимость коробки, удорожающая и оснащенный ею автомобиль;
  • расход топлива в автомобиле с такой коробкой несколько выше;
  • малая ремонтопригодность, в сравнении с «механикой»; для успешного ремонта необходимо иметь сложное оборудование и обладать специальными знаниями.

Но плюсы гидромеханического переключения передачи все же перевешивают его недостатки, особенно для начинающих водителей, не обладающих достаточным опытом. Кроме того, в городском ритме движения, с постоянными пробками, гидромеханическая АКПП экономит и силы, и нервы водителя, которому не приходится производить бесконечные манипуляции «сцепление-передача» и двигаться на 1 скорости с полувыжатым сцеплением.

Источник: https://motoran.ru/transmisii/gidromehanicheskaya-korobka-peredach

Гидромеханическая трансмиссия – все ради комфорта

Традиционное устройство автомобиля включает в себя в качестве обязательного элемента его конструкции такие узлы, как сцепление и КПП. Однако меняющийся стиль и образ современной жизни, с уклоном в сторону обеспечения все большего комфорта, приводит к изменению этих традиционных узлов машины. Им на смену зачастую приходит гидромеханическая трансмиссия.

Трансмиссия? А это что такое и зачем?

Для автомобиля трансмиссией будет всё, что обеспечивает поступление крутящего момента к колёсам от двигателя, в том числе КПП и сцепление. В классическом транспортом средстве это было именно так.

Но, как уже отмечалось выше, в современных легковых автомобилях им на смену приходит АККП. В этом случае управление машиной значительно упрощается – не надо пользоваться сцеплением и переключать вручную КПП.

Педаль сцепления просто-напросто отсутствует, а переключения выполняются автоматически.

Происходит это благодаря гидромеханической коробке передач. Чтобы понять, что это такое, лучше всего вспомнить о двух основных моментах, возникающих во время управления автомобилем:

  • необходимости отключения от двигателя трансмиссии при переключении передач;
  • изменении значения крутящего момента, передаваемого от мотора к колесам при изменении дорожных условий.

В обычной автомашине это происходит при нажатии на сцепление и переключении ручки коробки передач. Однако в машинах с АКПП подобное действие во многих случаях выполняет гидромеханическая коробка передач.

Об устройстве гидромеханической коробки

Говоря про устройство применяемой в составе легкового автомобиля гидромеханической коробки передач, надо отметить ее основные узлы:

  1. гидротрансформатор;
  2. управляющие механизмы;
  3. механическая коробка передач.

Про планетарную коробку

В гидромеханической АКПП чаще всего используется планетарный механизм, устройство которого понятно из приведённого ниже рисунка.

В самом простейшем варианте крутящий момент поступает на солнечную шестерню 6, с которой шестерни-сателлиты 3 находятся в постоянном зацеплении, они свободно вращаются на своих осях. На них установлено водило 4, соединенное с валом 5, сателлиты 3 постоянно находятся в зацеплении с шестерней 2, на внутренней поверхности которой имеются зубья.

Когда коронная шестерня 2 заторможена, момент через водило 4 поступает на ведомый вал, а когда шестерня расторможена, то сателлиты передают момент на нее, а ведомый вал остается неподвижным.
В АКПП используются фрикционные муфты сцепления и ленточные тормоза, а управление ими осуществляется с помощью гидромеханической системы, представляющей собой различные каналы, пружины и насос для создания давления масла.

Достоинства и недостатки гидромеханической коробки

В соответствии с приведенным описанием конструкцию гидромеханической коробки передач можно представить как последовательное соединение гидротрансформатора, коробки передач (обычно планетарной) с фрикционами, а также гидравлической системой управления.
Достоинством такой АКПП считаются:

  1. исключение ручного переключения передач;
  2. обеспечение передачи мощности без прерывания и рывков, особенно при начале движения.

Однако такая АКПП обладает и своими недостатками. Один из них – потеря крутящего момента, вызванная тем, что в состав автоматизированной коробки входит гидротрансформатор.

По данным проведенных замеров, эффективность подобной АКПП не превышает восьмидесяти шести процентов, тогда как у обычной механической коробки она составляет девяносто восемь процентов.

Однако это самый простой вариант гидромеханической АКПП, разрабатываются и устанавливаются на легковые автомашины новые, значительно более совершенные варианты подобной коробки.

Гидромеханическая коробка позволяет освободить водителя от их переключения при движении автомашины, что особенно актуально для начинающих водителей, повысить безопасность движения и обеспечить при этом дополнительный комфорт.

Источник: https://znanieavto.ru/kpp/gidromexanicheskaya-korobka-peredach.html

Акпп (акп) — автоматическая коробка переключения передач

Акпп (акп) — автоматическая коробка переключения передач (автоматическая коробка передач, коробка «автомат») является  одним из типов агрегатов, которые используются в устройстве трансмиссии автомобилей и другой техники с ДВС.

Главной задачей автоматической коробки, в отличие от МКПП, является возможность выбора и переключения передач без участия водителя транспортного средства. При этом выбор передачи (передаточного числа) осуществляется в зависимости от целого ряда условий и факторов.

При этом сегодня автоматической трансмиссией в обиходе принято называть любой тип коробок, которые работают по описанному выше принципу (когда переключение передач осуществляется автоматически). Сразу отметим, что называть «автоматом» все без исключения автоматические коробки является ошибкой.

Дело в том, что хотя изначально под АКПП следовало понимать исключительно классический гидромеханический «автомат», сегодня автоматической коробкой также называют роботизированные механические коробки  передач (РКПП, коробка-робот), а также вариаторную коробку передач (вариатор, CVT).[/do]

Важно понимать, что данные типы коробок (робот и вариатор) сильно отличаются от гидромеханической трансмиссии как по устройству и принципам работы, так и по ресурсу, надежности, техническим характеристикам и т.д.  

ЭТО ИНТЕРЕСНО:  Культиватор электрический для дачи какой лучше

Автоматическая гидромеханическая коробка передач АКПП: особенности и отличия

Как уже было сказано выше, АКПП отличается от «коробки-робот» и вариаторных коробок CVT. В первом случае роботизированная КПП фактически является механической коробкой передач, в которой реализована возможность автоматизированного переключения передач при помощи электронных и механических устройств.

Коробка вариатор и вовсе не является коробкой передач в буквальном смысле, так как вариаторные КПП изменяют передаточное число плавно (бесступенчато). Другими словами, ступени (передачи) в устройстве такой коробки отсутствуют, а сам вариатор относится к отдельной разновидности бесступенчатых трансмиссий.

Если же говорить о классической гидромеханической коробке «автомат» (гидромеханическая передача), данный тип трансмиссии предполагает саму автоматическую коробку с планетарными передачами, а также гидротрансформатор (ГДТ).

При этом гидротрансформатор является обязательным элементом, так как гидромеханическая коробка без данного устройства работать не способна. Отметим, что сам ГДТ не участвует в процессе переключения передач, так как играет роль сцепления, передавая крутящий момент от двигателя на входной вал коробки – автомат.

Также гидротрансформатор гасит вибрации и сглаживает толчки при переходе с одной ступени на другую. Однако с учетом таких особенностей (сочетание механики и гидравлики) под автоматической коробкой передач часто понимают оба данных элемента трансмиссии, то есть саму коробку АКПП и гидротрансформатор.

Преимущества и недостатки АКПП

  • Прежде всего, при учете соблюдения всех правил эксплуатации и своевременного обслуживания, ресурс данного типа коробок больше, в среднем, на 30-50%, чем у аналогов.
  • Еще гидромеханическая АКПП хорошо сочетается с мощными двигателями, то есть коробка способна выдерживать большой крутящий момент.
  • Также следует отметить ремонтопригодность самих коробок «автомат» и гидротрансформаторов, хотя качественный ремонт АКПП все равно остается достаточно дорогим. 

Если говорить о минусах, гидромеханическая АКПП отличается тем, что автомобиль с такой коробкой расходует больше топлива по причине несколько сниженного КПД подобных трансмиссий.

Также перед поездкой (даже в теплое время года) рекомендуется прогрев коробок данного типа, которые очень чувствительны к давлению трансмиссионной жидкости.

На владельцев автомобилей с АКПП с целью продления срока службы агрегата накладываются определенные ограничения.

Например, запрет на буксировку автомобиля без вывешивания передних колес со скоростью выше 30-40 км/ч на расстояние больше 50-60 км и ряд других.

Также следует выделить повышенные требования к качеству и свойствам рабочей трансмиссионной жидкости ATF, а также необходимость ее периодической замены (каждые 40-60 тыс. км. пробега).

Отдельно специалисты выделяют проблемы с гидроблоком и клапанами (соленоидами). Узкие каналы гидроплиты в процессе эксплуатации забиваются продуктами износа коробки и различными отложениями, клапана также выходят из строя. В результате это приводит к некорректной работе коробки.

Еще на «классических» АКПП, особенно в случае с бюджетными авто, слабым местом является гидротрансформатор, который теряет герметичность и начинает давать течь на относительно небольших пробегах. В таком случае требуется ремонт гидротрансформатора или его замена.

Источник: http://krutimotor.ru/akpp-akp-avtomaticheskaya-korobka-pereklyucheniya-peredach/

Гидромеханическая коробка передач что это такое — Спецтехника

Одним из элементов системы управления автомобилем является гидромеханическая трансмиссия. Благодаря ей водитель может переключать передачи плавно и без рывков. Гидромеханическая коробка передач — что это такое? Давайте разберемся.

Гидромеханическая коробка передач

Роль АКПП с гидромеханическим управлением

Для автомобиля и подобного ему транспортного средства трансмиссией является узел, который передает от двигателей к колесам крутящий момент. Так это выглядит в автомобилях со сцеплением, но их постепенно вытесняют с рынка АКПП.

«Автоматы» сегодня ставят все чаще. В них не предусмотрено сцепления, а передачи переключаются автоматически. Гидромеханика помогает облегчить задачу смены передач во время движения.

В классических коробках при управлении автомобилем выполняются следующие процессы:

  • отключение трансмиссии от двигателя в момент смены передач;
  • при изменении дорожных условий изменение величины крутящего момента.

Корпус гидротрансформатора вращается вместе с насосным колесом. Турбина с корпусом не связана (за исключением периода блокировки ГТ) – она соединена с валом коробки.

Реактор при этом закреплен через обгонную муфту – она не дает ему проворачиваться под напором потока, когда разница в скорости вращения насосного и турбинного колес велика, но позволяет вращаться вместе с ними в одном направлении, когда автомобиль движется с постоянной скоростью и проскальзывание ГТ минимально. Так удается поднять КПД коробки.

Для выполнения этих действий и необходима гидромеханическая АКПП. Она одновременно выполняет функции сцепления и трансмиссии. Эту коробку специально придумали для использования в городских условиях, где постоянно выжимать сцепление может быть проблематично из-за частых остановок в пробках. Управляется автомобиль с гидромеханикой при помощи педалей тормоза и газа.

Разновидности гидромеханики

В состав этой трансмиссии обязательно входит гидротрансформатор, составляющие системы управления и механическая коробка. Она может быть одной из нескольких систем:

  • многовальной;
  • двухвальной;
  • трехвальной;
  • планетарной.

Последняя разновидность коробки наиболее распространена. Она часто устанавливается на легковые автомобили, так как не имеет высокой металлоемкости. Она отличается меньшим шумом при работе, высоким сроком службы и компактностью.

Вальные механизмы можно встретить на грузовиках и автобусах. В них для переключения передач предусмотрены многодисковые муфты, которые помещены в масло.

Первая передача и задний ход включаются при помощи зубчатой муфты. Благодаря особому устройству вальных коробок переключение скоростей происходит за счет работы коленчатого вала.

Скорость движения при этом не снимается, крутящий момент и мощность не разрываются.

Удаление царапин на кузове автомобиля без покраски.

НЕ ТРАТЬТЕ ДЕНЬГИ НА ПЕРЕКРАСКУ!Теперь Вы сами сможете всего за 5 секунд убрать любую царапину с кузова вашего автомобиля.

Источник: https://mzoc.ru/prochie/gidromehanicheskaya-korobka-peredach-chto-eto-takoe.html

Гидромеханические коробки передач

Основным неудобством при использовании механических ступенчатых коробок передач является то, что водителю для переключения передач постоянно приходится нажимать на педаль сцепления и перемещать рычаг переключения передач. Это требует от него затрат значительных физических сил, особенно в условиях городского движения или при управлении автомобилем, работающим с частыми остановками.

Для устранения таких неудобств и облегчения работы водителя на легковых, грузовых автомобилях и автобусах все более широкое применение получают гидромеханические коробки передач. Они выполняют одновременно функции сцепления и коробки передач с автоматическим или полуавтоматическим переключением передач.

При гидромеханической коробке передач управление движением автомобиля осуществляется педалью подачи топлива и при необходимости тормозной педалью.

Гидромеханическая коробка передач состоит из гидротрансформатора и механической коробки передач. При этом механическая коробка передач может быть двух-, трех- или многовальной, а также планетарной.

Гидромеханические коробки с вальными механическими коробками передач применяются главным образом на грузовых автомобилях и автобусах.

Для переключения передач в таких коробках используются многодисковые муфты (фрикционы), работающие в масле, а иногда – для включения низшей передачи и заднего хода – зубчатая муфта.

Переключение передач фрикционами происходит без снижения скорости вращения коленчатого вала двигателя, т.е. бесступенчато – без разрыва передаваемых мощности и крутящего момента.

Гидромеханические коробки с планетарными механическими коробками передач получили наибольшее распространение и применяются на легковых, грузовых автомобилях и в автобусах.

Их преимущества: компактность конструкции, меньшие металлоемкость и шумность, больший срок службы.

К недостаткам относятся сложность конструкции, высокая стоимость, пониженный КПД.

Переключение передач в этих коробках производится при помощи фрикционных муфт и ленточных тормозных механизмов. При этом при включении одной передачи часть фрикционных муфт и ленточных тормозных механизмов пробуксовывает, что также снижает их КПД.

Гидромеханическая коробка передач на автомобилях

На рисунке 4 представлена двухступенчатая гидромеханическая коробка передач легкового автомобиля.

Она состоит из гидротрансформатора 1, механической планетарной коробки передач с многодисковым фрикционом 3 и двумя ленточными тормозными механизмами 2 и 4 и гидравлической системы управления с кнопочным переключением передач.

Кнопки соответственно означают: нейтральное положение, задний ход, I передача и движение с автоматическим переключением передач. В двухступенчатой механической коробке передач имеются два одинаковых планетарных механизма 5 и 6.

Рисунок 4 – Гидромеханическая коробка передач легкового автомобиля

1 – гидротрансформатор; 2, 4 – тормозные механизмы; 3 – фрикцион; 5, 6 – планетарные механизмы

В нейтральном положении фрикцион 3, а также тормозные механизмы 2 и 4 выключены. Трогание автомобиля с места происходит при включенной I передаче. В этом случае масло под давлением поступает в цилиндр тормозного механизма 2, лента которого затягивается, и солнечная шестерня планетарного механизма 6 останавливается.

Если включена кнопка «Движение», то при разгоне автомобиля происходит автоматическое переключение на II передачу, что обеспечивается одновременным выключением тормозного механизма 2 и включением фрикциона 3. В этом случае планетарные механизмы 5 и 6 блокируются и вращаются как одно целое.

Для движение автомобиля задним ходом включается только тормозной механизм 4.

Другие статьи по коробкам передач

Источник: https://carspec.info/gidromehanicheskie-korobki-peredach

Устройство и принцип работы классической АКПП

С развитием автомобилестроения и выпуском новых видов трансмиссий вопрос, какая коробка передач лучше, становится все более актуальным. АКПП – что это такое? В этой статье разберемся с устройством и принципом работы автоматической коробки передач, узнаем, какие виды АКПП существуют и кто придумал АКПП. Проанализируем достоинства и недостатки разных видов автоматических трансмиссий. Познакомимся с режимами работы и управления АКПП.

Что такое АКПП и история ее создания

Селектор автоматической коробки передач

Автоматическая коробка передач, или АКПП, представляет собой трансмиссию, обеспечивающую выбор оптимального передаточного числа в соответствии с условиями движения без участия водителя. Это обеспечивает хорошую плавность хода автомобиля, а также комфорт при движении для водителя.

В настоящее время существует несколько видов автоматической КПП:

В данной статье все внимание будет уделено классическому автомату.

История изобретения

Основу автоматической трансмиссии составляет планетарная коробка передач и гидротрансформатор, впервые изобретенный исключительно для нужд судостроения в 1902 году немецким  инженером Германом Фиттенгером. Далее в 1904 году братья Стартевенты из Бостона представили свой вариант автоматической КПП, имеющий две коробки передач и напоминающий чуть доработанную механику.

Первая серийная автоматическая коробка передач GM Hydramatic

Автомобиль, оснащенный планетарной коробкой передач, впервые увидел свет под маркой Ford Т. Суть коробки заключалась в плавном переключении скоростей за счет двух педалей. Первая включала повышающую и понижающую передачи, а вторая – заднюю.

Эстафету приняла компания General Motors, которая в середине 1930-х годов выпустила полуавтоматическую трансмиссию. Сцепление в автомобиле еще продолжало присутствовать, а планетарным механизмом управляла гидравлика.

Приблизительно в это же время компания Крайслер доработала конструкцию коробки гидромуфтой, а вместо двухступенчатой коробки стал использоваться овердрайв – повышающая передача с передаточным числом менее единицы.

Первую в мире полностью автоматическую КПП в 1940 году создала все та же компания General Motors. АКПП представляла собой сочетание гидромуфты с четырехступенчатой планетарной коробкой с автоматическим управлением посредством гидравлики.

Сегодня известны уже шести-, семи-, восьми- и девятиступенчатые АКПП, производителями которых являются как автоконцерны (KIA, Hyundai, BMW, VAG), так и специализированные компании (ZF, Aisin, Jatco).

Плюсы и минусы АКПП

Как и любая коробка передач, автоматическая трансмиссия имеет как плюсы, так и минусы. Представим их в виде таблицы.

Плюсы АКПП Минусы АКПП
1. Плавное и автоматическое переключение скоростей, создающее комфорт для водителя. 1. Сложность конструкции.
2. Отсутствие необходимости в периодической замене сцепления. 2. Высокая стоимость самой коробки.
3. Хорошая динамика за счет возможности ручного переключения скоростей. 3. Высокая стоимость ее обслуживания.
4. Автомат может подстраиваться под стиль вождения водителя (адаптироваться). 4. Более низкий КПД и повышенный расход топлива в сравнении с механикой.

Устройство автоматической трансмиссии

Схема АКПП

Устройство АКПП достаточно сложное и состоит из следующих основных элементов:

Гидротрансформатор представляет собой корпус, заполненный специальной рабочей жидкостью ATF, и предназначен для передачи крутящего момента от двигателя к коробке передач. Фактически он заменяет сцепление. В его состав входят насосное, турбинное и реакторное колеса, блокировочная муфта и муфта свободного хода.

Колеса оснащены лопастями с каналами для прохода рабочей жидкости. Блокировочная муфта необходима для блокировки гидротрансформатора в конкретных режимах работы автомобиля. Муфта свободного хода (обгонная муфта) необходима для вращения реакторного колеса в противоположную сторону. Более подробно про гидротрансформатор можно почитать здесь.

Планетарный механизм АКП включает в себя планетарные ряды, валы, барабаны с фрикционными муфтами, а также обгонную муфту и ленточный тормоз.

Механизм переключения скоростей в АКПП достаточно сложен, и, по сути дела, работа трансмиссии состоит в выполнении некоторого алгоритма включения и выключения муфт и тормозов посредством давления жидкости.

Планетарный ряд, точнее блокировка одного из его элементов (солнечная шестерня, саттелиты, коронная шестерня, водило), обеспечивает передачу вращения и изменение крутящего момента. Элементы, входящие в планетарный ряд, блокируются при помощи обгонной муфты, ленточного тормоза и фрикционных муфт.

Пример гидравлической схемы АКПП

Блок управления АКПП может быть гидравлическим (уже не применяется) и электронным (ЭБУ АКПП). Современная гидромеханическая трансмиссия оснащается только электронным блоком управления.

Он обрабатывает сигналы датчиков и формирует управляющие сигналы на исполнительные устройства (клапаны) гидроблока, обеспечивающие работу фрикционных муфт, а также управляющие потоками рабочей жидкости. В зависимости от этого жидкость под давлением направляется в ту или иную муфту, включая определенную передачу. TCU также управляет блокировкой гидротрансформатора.

При неисправности блок TCU обеспечивает функционирование КПП в “аварийном режиме”. Селектор АКПП отвечает за переключение режимов работы КПП.

В автоматической коробке применяются следующие датчики:

  • датчик частоты вращения на входе;
  • датчик частоты вращения на выходе;
  • датчик температуры масла АКПП;
  • датчик положения рычага селектора;
  • датчик давления масла.

Подробнее про датчики АКПП можно почитать тут.

Принцип работы и срок службы АКПП

Время, необходимое на переключение скорости в АКПП, зависит от скорости автомобиля и нагрузки на двигатель. Система управления вычисляет нужные действия и передает их в виде гидравлических воздействий. Гидравлика перемещает муфты и тормоза планетарного механизма, тем самым происходит автоматическое изменение передаточного числа в соответствии с оптимальным режимом двигателя в данных условиях.

ЭТО ИНТЕРЕСНО:  Как называется брызгалка для цветов

Одним из главных показателей, влияющих на эффективность работы автоматической трансмиссии, является уровень масла, который нужно регулярно проверять. Рабочая температура масла (ATF) составляет около 80 градусов.

Поэтому для того, чтобы избежать повреждений пластиковых механизмов коробки в зимний период, перед движением машину необходимо прогревать. А в жаркое время года, наоборот, охлаждать.

Охлаждение АКПП может осуществляться охлаждающей жидкостью или воздухом (с помощью масляного радиатора).

АКПП в разрезе

Наибольшее распространение получил жидкостный радиатор. Температура atf, необходимая для нормальной работы двигателя, не должна превышать 20% от температуры в системе охлаждения.

Температура охлаждающей жидкости не должна превышать 80 градусов, за счет этого и происходит охлаждение atf. Теплообменник соединен с внешней частью корпуса масляного насоса, к которой крепится и фильтр.

При циркуляции масла в фильтре происходит его контакт с жидкостью охлаждения через тонкие стенки каналов.

Кстати, автоматическая трансмиссия считается очень тяжелой. Вес АКПП составляет около 70 кг (если она сухая и без гидротрансформатора) и около 110 кг (если она заправленная).

Для нормального функционирования АКПП необходимо и правильное давление масла. От этого во многом зависит срок службы АКПП. Давление масла должно быть на уровне 2,5-4,5 бар.

Ресурс коробки-автомат может быть различен. Если в одном автомобиле трансмиссия может прослужить только 100 тысяч км., то в другом – порядка 500 тысяч. Это зависит от эксплуатации автомобиля, от регулярного контроля за уровнем масла и его замены вместе с фильтром. Продлить ресурс АКПП возможно также используя оригинальные расходные материалы и своевременно обслуживая КПП.

Управление АКПП

Управление автоматической трансмиссией осуществляет селектор АКПП. Режимы работы автоматической трансмиссии зависят от перемещения рычага в определенное положение. В автомате доступны следующие режимы:

  1. Р – Parking. Используется при парковке. В данном режиме механически блокируется выходной вал трансмиссии.
  2. R – Reverse. Используется для включения передачи заднего хода.
  3. N – Neutral. Нейтральный режим.
  4. D – Drive. Движение вперед в режиме автоматического переключения скоростей.
  5. M – Manual. Режим ручного переключения скоростей.

В современных автоматических трансмиссиях с большим числом рабочих диапазонов могут использоваться дополнительные режимы работы:

  • (D), или O/D— овердрайв  –  «экономичный» режим движения, при котором возможно автоматическое переключение на повышающую передачу;
  • D3, или O/D OFF— расшифровывается как “отключение овердрайва”, это активный режим движения;
  • (либо цифра 2) — диапазон пониженных передач (первая и вторая, либо только вторая передача) , «зимний режим»;
  • (либо цифра 1) — второй диапазон пониженных передач (только первая передача).

Схема режимов АКПП

Также имеются и  дополнительные кнопки, характеризующие режимы работы АКП:

  • кнопка Sport, или Power — переключение передач происходит на более высоких оборотах двигателя;
  • кнопка Winter, или Snow — движение с места происходит со второй или третьей передачи;
  • кнопка Shift lock (шифт лок) — возможность разблокирования селектора при остановленном двигателе.

В некоторых коробках есть режим “кик даун” (kick-down). Режим “кик даун” предполагает резкое ускорение транспортного средства путем переключения на пониженную передачу. В некоторых случаях режим “кик даун” запрещен при отключении режима овердрайв.

Заключение

Автоматическая КПП занимает достойное место среди известных коробок передач и составляет конкуренцию привычной механике. Разнообразие режимов движения, а также плавное переключение передач позволяют водителю наслаждаться комфортным вождением.

(3 5,00 из 5)

Источник: https://techautoport.ru/transmissiya/korobka-peredach/akpp.html

Выбор коробки передач. Что лучше, механика, автомат, вариатор или робот?

Механическую коробку передач выбрать, или автоматическую? А если автоматическую, то обычный автомат, «робот», или вариатор? Такие вопросы очень популярны в среде автолюбителей при выборе будь-то нового, будь-то подержанного автомобиля. Интернет заполнен на тему коробок передач, причем как полезной информацией, так и информационным «хламом».

Отличить полезное от хлама может только профессионал в теме. Такой у него, у Интернета, недостаток. Поэтому я решил написать немножко строк про все эти механики, автоматы, роботы и вариаторы, причем, не погружаясь «в гайки», чтобы любой читатель, вне зависимости от уровня технической грамотности, смог понять, о чем идет речь, и что ему, ЛИЧНО, будет лучше.


 

Механическая коробка передач

Начнем с «механики». В случае механической коробки передач, под капотом имеем двигатель, «черный ящик» коробки, со всеми её валами, шестеренками, синхронизаторами и включающими муфтами. А между двигателем и коробкой узел сцепления. На педаль сцепления нажали – двигатель и коробку полностью разъединили.

Пока вы удерживаете педаль сцепления нажатой, силовой агрегат и коробка передач ничем не связаны и вы можете включить любую передачу, исходя из условий движения. Вот это и является основным плюсом «механики», особенно для «продвинутого» водителя, который знает и умеет применять приемы активного управления автомобилем.

Например, в случае переднеприводного авто, «упереться» двигателем в колеса передней оси перед маневром. А в случае заднего привода, «довинтить» машину в вираж, перейти на более крутую траекторию. Но как часто случается, недостатки являются продолжением достоинств.

Активно «драйвануть», конечно, это приятно, а вот орудовать педалью сцепления и рычагом переключения в бесконечных пробках мегаполисов – не самое приятное занятие. Вот это и есть минус.

 

Гидромеханическая автоматическая коробка передач, или «обычный автомат»

Чтобы не управлять коробкой «врукопашную», и не особо напрягаться ручками-ножками в плотном городском потоке, и придумана автоматическая коробка передач. Сначала появилась гидромеханическая АКП (автоматическая коробка передач). Для того, чтобы понять, как она работает, нужен вентилятор (обычный, бытовой) и какая-нибудь детская вертушка-игрушка с винтом-пропеллером, похожим на вентиляторный. Включите вентилятор и поднесите к нему эту игрушку.

Что произойдет? Пропеллер на игрушке тоже будет крутиться! Теперь представьте, что винт приводит в движение не электромотор вентилятора, а двигатель автомобиля. А второй винт находится на валу, уходящем в «черный ящик» с шестеренками, муфтами, и всем прочим. Оба этих винта заключены в герметичный корпус, заполненный специальной трансмиссионной жидкостью, который называется гидротрансформатором.

  Для чего эти страсти? А для того, чтобы плавно трогаться, как можно плавнее переключать передачи безо всякого сцепления «от ноги» водителя, как в «механике» между двигателем и «черным ящиком» с шестеренками. Ведь для того, чтобы тронуться, нужно плавненько соединить мотор и «черный ящик» коробки. Вот гидротрансформатор, совершенно не теряя усилий от двигателя, это и делает. А жидкость нужна для того, чтобы через нее передавать вращательное движение.

А то воздух, он не справится. Плотность воздуха мала для передачи энергии на таких скоростях вращения. Что же касается переключений передач, то они выполняются по команде блока управления, автоматически, в зависимости от условий движения. Раньше эти блоки были гидравлические, сейчас электронные. В общем, всё в гидромеханической АКП, вроде, хорошо. Сама едет, сама переключается.

Водителю остается только жать педали «газа» и тормоза, да селектор «автомата» щелкать между «Паркинг», «Драйв» и «Назад». Причем работает эта штука вполне надежно. Если не изображать из себя Шумахера на АКП, и соблюдать Регламент ТО, то и не ломается.

Но недостатки есть.

Главные среди них – ощутимые моменты автоматических переключений диапазонов АКП в «черном ящике» с шестеренками, и более высокое потребление горючего, в сравнении с «механикой» при одинаковых силовых агрегатах. Потребность в большем комфорте, возраставшие цены на топливо и забота об экологии стимулировали инженеров подумать на тему автоматизации ещё раз.

 

«Вариатор». Вариаторная АКП

Чтобы понять, до чего додумались инженеры, представьте велосипед. Педали, две звездочки, а между ними – цепь. На заднем колесе чуть более продвинутых моделей есть несколько звездочек, чтобы можно было передачи переключать. Переключил на большую звездочку – крутить педали легче и можно ехать в крутую горку, только чаще крутить педали приходится.

Скорость велосипеда при этом падает, но это плата за высокую тягу. А если ехать по ровной местности, или с горы, то включил звездочку сзади поменьше – крутишь педали реже, а скорость велосипеда растет. Теперь представьте, что на велосипеде вместо цепной передачи стоит ременная.

То есть, вместо цепи – ремень, вместо звездочек — шкивы, только вместо кучи звездочек на заднем колесе – ОДИН шкив, но его диаметр может плавно изменяться.

Представили? Вот, перед вами, вариаторная автоматическая коробка передач! Один шкив – постоянного размера, второй – переменного и его диаметр меняется по команде блока управления, подстраиваясь под условия движения. А между ними – прочнейший «ремень», представляющий собой или многозвенную цепь, или составной, из металлических пластин.

Плавное изменение диаметра одного из этих шкивов приводит к тому, что моменты переключений АКП не ощущаются вовсе. Ведь их попросту нет, этих моментов переключений. J Изумительно комфортная штука в работе, этот вариатор! Но и в нем не обошлось без недостатков, существенных и помельче.  «Вариаторы» недёшевы. Также они категорически не любят пробуксовок.

Из-за того, что между «черным ящиком» со шкивами и ремнем приходится ставить все тот же гидротрансформатор (трогаться-то нужно!), а также из-за механического трения в «черном ящике», потери энергии достаточно велики, расход топлива, в с сравнении с «обычной» АКП, немногим меньше. А может быть и больше.

А еще приходится с программами двигателя «поколдовать», чтобы он не гудел, как троллейбус на постоянных оборотах при разгонах. Ведь ступенчатого переключения передач – нет. Поэтому инженерам опять открылся простор для изысканий.

«Роботы». Роботизированные коробки передач

Чтобы преодолеть недостатки гидромеханических и вариаторных АКП, несколько конструкторских школ обратили свое внимание на обычную механическую коробку.

А что если заменить ножной привод сцепления электроприводом, рычаг переключения передач и тяги к «черному ящику» с шестеренками электрическими исполнительными механизмами, и управлять сцеплением и переключениями с помощью электронного блока, исходя из условий движения? Конечно, легко и скоро только сказка сказывается.

Над программами управления для этого блока и надежностью электропривода инженерам пришлось крепко повозиться, но автоматизированные механические коробки передач, которые журналисты окрестили «роботизированными», или «роботами», пошли в серийное производство для автомобилей малых классов. Они представляют собой именно классическую «механику», в которой управление сцеплением и переключениями передач осуществляется электронным блоком.

Главное достоинство большинства «роботов» — высокая топливная экономичность, для чего они, прежде всего и создавались. Ведь компьютер с совершенной программой управления никогда не ошибается, никогда не сердится, не впадает в депрессию и никогда не устает, в отличие от водителей с разным опытом, мастерством и стойкостью к физическим и моральным нагрузкам.

Поэтому автомобиль с «роботом» расходует меньше топлива, чем такое же авто с любой другой коробкой, включая «механику». А ещё такой «робот» дешевле любой другой АКП в покупке, при заказе нового авто. Вот так. 

Но и тут без недостатков не обходится. Как ни старались инженеры оптимизировать моменты переключений, «клевки» автомобиля носом при буйных разгонах весьма ощутимы. Такие «роботы» для экономичной и спокойной езды, а не для «шумахера». Еще они не любят пробуксовок в агрегатах сцепления. Пришлось инженерам опять поднапрячься.

«Роботы» класса DSG от Volkswagen

Представьте себе автомобиль с шестиступенчатой механической коробкой передач. Представили? Только коробка эта не совсем обычна. Точнее, совсем не обычна. Она как бы состоит из ДВУХ агрегатов, причем 1-я, 3-я и 5-я передачи связаны с двигателем через один модуль сцепления, а 2-я, 4-я и 6-я – через другой.

Получается что-то вроде «два в одном». А теперь представьте, что все управление – полностью автоматическое, электронное и электрическое. Причем, когда вы разгоняетесь, например, на 2-й передаче, блок управления УЖЕ ВКЛЮЧИЛ 3-ю, и только выжидает наилучший момент чтобы сделать моментальный «клац-клац» независимыми сцеплениями, чтобы «отпустить» вторую передачу и «врубить» заранее подготовленную 3-ю.

Переключения в такой АКП занимают не просто доли секунды, а миллисекунды! Водитель и пассажиры этих переключений просто не замечают, и разгон плавен, и очень быстр. Например, в DSG, которую первым в мире поставил на конвейер концерн VOLKSWAGEN, моменты переключений занимают 7 миллисекунд. Это гораздо быстрее, чем вы мигаете глазами.

Поэтому никаких рывков и толчков, как у «роботов» описанных выше, нет.

ГАРАНТИЯ НА DSG 7 SPEED увеличена до 5 лет или 150 000 км пробега:

Концерн VOLKSWAGEN AG, идя на встречу пожеланиям клиентов, с целью сохранения уверенности покупателей в автомобилях концерна, осуществляет за счет завода изготовителя бесплатный ремонт или замену узлов коробки передач DSG 7 DQ 200 в срок до 5 лет или до достижения 150 000 км пробега с момента передачи автомобиля первому покупателю. При обращении владельца автомобиля к официальным дилерам с претензией по работе DSG 7 DQ 200 бесплатно будут проводиться диагностика и при необходимости бесплатный ремонт в соответствии с актуальными техническими рекомендациями концерна.

Точно так же такие «роботизированные» коробки переключаются не только «вверх», но и вниз. Блок управления коробкой внимательно «наблюдает» за действиями водителя с помощью датчиков на педалях и рулевом механизме, и заранее подготавливает наилучшую передачу для целей водителя.

Если я скажу, что такие «роботы» класса VW DSG работают блестяще, то это не будет преувеличением, причем не только с точки зрения переключений передач. Их блоки управления тоже не «устают» и не «ошибаются», поэтому потребление топлива у автомобиля с DSG, особенно в городском цикле, меньше, чем с любой другой коробкой, включая «механику».

Что же касается недостатков, то их мало, но они, увы, есть: Высокая стоимость и неприемлемость пробуксовок в агрегатах сцепления (впрочем, какое сцепление это любит?).

Резюме:

Как видите, однозначно сказать, что лучше, и что хуже, нельзя. Каждому свое!

 механика» или «робот»

Если вы активный драйвер, понимаете толк в скоростном и маневренном управлении автомобилями

традиционная

гидромеханическая АКП

Если вы выбираете внедорожник, хотите комфорта в городе, но и за город выбираетесь, причем, не только на шоссе

простой «робот»

Если вы спокойный водитель, ездите по городу, выбираете малый автомобиль и экономичность для вас очень важна – то более простой «робот» вас вполне устроит
«Вариатор» этот тип коробки будет хорош для поклонников предельной плавности хода

 Вот такие варианты. 

Источник: https://www.atlantm.ru/expert/stats/stats_136.html

Понравилась статья? Поделиться с друзьями:
ПРО Технику
Как отрегулировать карбюратор на бензопиле дружба

Закрыть